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Intertwining Relations, Asymmetric Face Model,
and Algebraic Bethe Ansatz for SU, ,(2) Invariant
Spin Chain

A. Ghose Choudhury' and A. Roy Chowdhury!
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Intertwining relations for the quantum R-matrix of the SU, (2) invariant spin
chain are obtained and the corresponding face model is deduced. An important
difference is seen to arise due to the asymmetry generated by the parameters p
and ¢, which leads to a asymmetric face model. An algebraic Bethe ansatz is set
up and solved with the help of these intertwining vectors.

1. INTRODUCTION

Integrable models of quantum spin chains have played an important role
in the development of the quantum inverse scattering transform (Baxter,
1982; Faddeev and Takhtajan, 1979; Wadati and Akutsu, 1988). Besides the
usual model of nearest neighbor interaction, other models, such as IRF, SOS,
etc., are in vogue and have characteristics of their own (Wadati, 1988; Akutsu,
1987, Deguchi, 1987; Yang and Ge, 1990). It was also demonstrated that the
usual spin-chain model can also be transformed into an SOS or IRF model
by the use of intertwining relations of the quantum R-matrix (de Vega, 1990,
1992). Here we construct the IRF model pertaining to the quantum R-matrix
of the SU,(2) invariant spin chain (Das Gupta and Roy Chowdhury, 1993).
The Bethe states are subsequently constructed by the intertwining relations.
Two parameters p and g give rise to a new feature of our model leading to
a different amount of shifting on the lattice.
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2. FORMULATION AND DERIVATION OF FACE MODEL

The quantum R-matrix for the SU, (2) invariant spin chain can be
written as

a 0 0 O
|0 b C O
R=10 ¢ b, 0 ()
0 0 0 a
where
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We define new variables 4 and v through A = ¢ and u = ¢" and also set ¢
= ¢® and p = ¢ and consider the transformed R-matrix R = RP, where P
is the permutation matrix. The intertwining relation for the above R-matrix is

Rl — v)® (1) @ Do(V) = h(u — )[D3(v) @ Dy(w)] 2)

A simple analysis of equation (2) shows that possible solutions are

ul2
P, = X*(u) = (:—-u/z);

viZ
®; = X(v) = ( ;m);

and a second set is

~ul2

e(v—r)/Z
(DZ = X+(V - 7) = (e—(v—r)/Z) (3)

e(v—‘v)/Z
Dy =X~y = e~ (V=2

e

B e 5 e—(v—ﬁ)/Z
D, =X"(u) = o2 P, =X"(v—-23) = -502 “4)
$; = X7(v); $,=X"(u— 9
One can then easily deduce the following relations for the X* vectors:

R = v)[X*(w) @ X*(v — ] = h(u — v)[X*(v) ® X*(u — V)] (5)
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with A = e“7V*® — ==+ and
Ru—vX wQ@X (v—8]=hu—- X (V)RX (u-123)] (6
R — v)[X*(w) ® X~ (v + a)]
= (® — e MX (M B X (v + )]
+ OV — TNy o — ) @ X — 8] (7)
R = v)[X () @ X*(v + )]
= (® — e NX (V) ® X*(u + )]
+ (e — e WTNeBTVIXH Y + o — ) @ X (u + )] (8)

Equations (5)~(8) will be repeatedly used in the following.

We now deduce the statistical weight factors for the corresponding face
model by using the above equations. For that we choose the unspecified
constant « as follows:

a=(k+Dr+ k+msd—s for X*-type vectors
a=—k+Dr—(k+md+1t  for X -type vectors

where k, [, and m run over integers. With this choice we can designate the
vectors X, X', ¥, and Y’ as follows:

X =X'0+ o) = X..(8)
X =X0+a~-7) = Xu-(0)
Y=X(8+ a)=Y,,0)
Y =X (0 +a+r="Y. 0
Thus equations (5)—(8) can be written as
Rt — X)) @ X, (v) = h(u — WX (v) & Xj—i(u)
Ru — )Y, (u) ® Y, (v) = h(u — v)Y,(v) ® Yy, ((u) )
R(u — v)X,(u) ® Y,(v)
= (® — e MNX,(v) ® Yy(w)
+ (et — ewﬂ)e(&-y)/zyp“(v) ® X, (w)
R — Y, (w) ® Xy(u)
= (&’ — e MY, (v)  X;(u)

+ (eu—v _ e—u+v)e(6“'Y)/2XI_l(v)Yp_](u)
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We now regroup the two classes of vectors X, Y into a single set by defining
XMWy = Xy, XMy = Y(w)
Thus the above relations can be written as
Ru — »XN™ 1) @ XM2(v) = h(u — v)XM'(v) @ XM 2(w)
f?(u _ v)X““(u) R X"“'”z(v) = h(u — v)X“‘”(v) ® X!HHr2y)
Ru = v)XH () @ XPr+i(v)
= (e — e "MXM (v) @ XPPt (1)
+ (et — e-u+|’)e(8-'y)/2Xp+l‘p+2(v) ® X’“"(u)
R(u = »XP#* () ® X"7'(v)
= (e — e NXPPHI(v) @ XM ()
+ (eu-—v —_ e—u+v)€(6—y)12Xl~lJ—-Z(v) ® Xp—l.p(u)

By a simple readjustment of the indices all these can be combined into a
single one,

R(u — X" () @ X™(v) = ¥, W(l, m, n, p®)X"7(v) ® XP"(u) (10)
P

where 8 = u — v, along with the condition
HH=—ml=im—nl=1l-pl=Ilp—nl=1

so that we can read off the statistical weight factors for the face model,
WA+ 1L, L~ 1,]) = et V7?8 — gmlumvty
W~ LLI+ 1) = e " — gmlvty
WI-1,L1-1)=¢e —e an
WAL= LLI+ 1) = (" — e t)e® 12
Wi+ 1LLI+1)=e —e?
WL+ 1L L= 1) = (7Y — e 4tV)el® V2

3. CONSTRUCTION OF THE VACUUM STATE

We now proceed to the explicit realization of the Bethe states and the
evaluation of the corresponding eigenvalues.
The monodromy matrix reads

T8 = 2 t0(0)2,,(8) -+ ¢ (6) (12a)

ap e an-1
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where
[1a(8)]ay = REX(O)
A family of gauge-transformed monodromy matrices follows by replacing
5Oy = M act{(®) [ Mcs 11 (12b)

where M is a 2 X 2 matrix

_ (X ") _
M-(X; Yz)—(X,Y)

M- = LY -ny_ 1 __?
A\-X, X XY\ X
For the monodromy matrix associated with a line in the lattice we find

Tba(e)ai'y - [MI—-(-|N]auTCa(e)ui'y[Ml]ab = 73,’2(0)

In general we write

and

_ [AY® BY®)
T{(e) - (Cf(g) Dt(e)) (120)

The first step in setting up the Bethe ansatz is to define a vacuum state,
which is obtained from the condition that the “21” element of #8) operating
on an arbitrary vector ® = (w;, w,)* vanishes. That is,

Hi(B)w =0 (12d)
which is equivalent to
H(RX ® 0)gn = 0 (13)

Comparing with equations (5)—(8), one observes that a possible set of solu-
tions is

X = X0 + a)
X =X0+a—17) (14)
® = X — )

After the identification of the vacuum, we find the eigenvalue of the state
corresponding to the diagonal elements of #(8). For that we observe that

(0w = —h(B)w' with o' = X*(a)
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or

@)X (@ — v) = —h(8)X*(a) (15)
Similarly,

Pn(0)X (@ — ) = b1 X e —y — B) (16)

We now define the arbitrary quantity a occurring in (14) to be

a=(t(k+hy+*k+md—s
k, I, m integers, for X*-type vectors, and

a=—(k+Dy—(k+md+1t

for X~ -type vectors, whence we can at once rewrite the solution vectors X*,
X™, and Y as follows:

X0 +ta)y=XO0+k+Dy+k+md-—ys)

= Xi+4(8) (17
X' =X0+a—v)= X (0), X0+ a) = Y (0)
Y =X+ a+vy) =Y. (0) (18)

Thus we may say that X', ¥" correspond to the (/ + £ — Dth point of the
lattice and X, Y correspond to the (I + k)th point. Consequently we get

0 =X~y = o
o = X*(0) = ol (19)
o’ = o,
Equations (12), (15), and (16) can be recast as
(@)} = h(B)wis
Ba(B)wf = (b — e ®)el® 2} _, (20)
bi(B)wf = 0

which permits us to interpret the action of the elements of the monodromy
matrix as a shifting on the lattice site.

4. CONSTRUCTION OF THE BETHE STATE

From the above property of the vector w, the pseudovacuum can be
defined as
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Q=0 QwQ w) - @ wl 21
This structure of (), leads at once to
AL = WNOHQL!
D(')(O)Qf\; = (e — e‘e)eN’Z‘s‘”ﬂ}’\}"
™oL =0 (22)
Next we consider the transformed monodromy and transfer matrix
T*8) = M {(B)T(O)M(8);  7(8) = Ay + D,y

= Anl(e) Bn.f(e)
Cn.l(e) Dn,l(e)

1 [Y,,(e)r(e»«e) Y,,(eme)Y(e)] 23)

T A | X,0)T0)X(®) X,(0)T(8)Y(6)

The commutation rules of these new monodromy elements can now be
deduced by the use of

R = Y) ® Y () = h(u = VY() ® Y1\ (u) (24)
and its adjoint
1) ® PR = v) = h(u — W) ® 7(v) (25)
and using proper projection, which at once yields
By il()Bis 1 (V) = Bra i s(0Bygs 1 (1) (26)
ApWIBi—i e 1(U) = i = VIBy pis(Ai— 1 p (V)
= Blu = V) Bra+2(MAr—1 n+1(0) 27
Dy j()By—y 1+1(v) = a(u = V)Bi—2,(V)Di— 1 141 (V)
= Blu — v)Bi—2/()Dy— 1 1+1(v) (28)
where
aw-y =" NRO IR g,y 29)

6,u—v — e—u+v
_ (e® — e Nexp((y — 8)/2)

e _— e-u+v

u=y

We now start with the state
A = B (VDBI—24+2(v2) *** Bronien(V) QN (30)
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and deduce with the help of above communication rules
Ay = kUl a(vg = B 2(VIB—1 1+3(v2) *** Bray—nit14a(Va)

X Appg+n(W)QR"

+ 21 {B(u - Vj) knl a(v, — Vj)}BI.HZ(Vl) Bl+l—-j,l+l+j(u)
j= =

k#j
Xoees BI-H—n,l+l+n(vn)Al—n,l+n(vj)Qx+n (31)

Now A,_,;+.(4) can be applied on Q4" only when n = N/2, whence we
get, using

APWOL = WNuwQE
h(u) = e**® — =@t (32)
that
Ay, vo, oo, V)

= hN(U) kUl a(vy — wBa(vy) <+ Bl+|—n,l+x+n("n)95\7"“

n

+ El {B(u = V) kﬂl a(v, — Vj)}Bl,Hz(Vl) “r Broy—jue1+5(u)
- _
k#j

X oo Bl+1—n.l+l+n(Vn)hN(Vj)Qﬁl+" (33)
By a similar computation,

Dy vy -+ vp)

= h'Mu) k[__l a(u = vP—i(vy - - v,

+ El {-B(u =) kﬂ‘ a(v; — Vk)}h’N(Vj)‘Vl—i
P _

k+#j

X(Vy o Ve, Uy Vit W)

R (u) = (e* — e““)exp(a ; y) (34)

Now the transfer matrix is given by



Intertwining Relations for SU, ,(2) Invariant Spin Chain 1707

T(u) = A,_,(u) + Du(bl) for all /

From the relations we observe that due to the operation of A;; or D,, the
index of § changes by one and hence they are not eigenvectors. To construct
eigenvectors we multiply relations (33) and (34) by ¢*™®, 0 < 6 < |, and
sum over / from — to

x

> (Afu) + D)} (vivy e v,)

===

= [hN(u) LUI a(vy — wer™ Y, (v -0 v,)

==

+ h'Mu) kUl a(u = v)er™ (v -+ Vn)}

+ 3y ez“f"’[ﬁ(u =) inI‘ alv, — v)RMv))

I=—w j=1
k#j

X vy oo Vg, W, Vg 200 V) + Blu = vp)

n

X [T av; = v vy = vy, ty Vg + Vn)]
k=1 .
k#j

Now suppose
2 ™Y (v - v,) = Do(vy <o vp)
Thus we get

Ty Po(vy - Vi)
= [e'z"‘eh""(u) ﬁ a(v, — u) + e¥™h'Nu) ﬁ alu — vk)]
k=1 k=1
X Dg(vy =+ V) + 2 [e‘z“"e{ﬁ(u - ) L[_[x a(v, — vj)hN(vj)}
A =

n
— 0B (u — Vi) n a(v; — Vk)h,N(Vk):Iq)ﬁ(vl Tt Vjegs Uy Vil Tt V)
k=1

k]

(35
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Thus Py will be an eigenstate of T(u) if and only if the second bracket in
(35) vanishes; whence we get

N
[h(v/):| - e4‘n’i9 n n(Vj - Vk)
h'(v;) e a(v, = v))
¥/

(36)

and the eigenvector becomes

Au) = e ™ 8hpNw) ﬁ a(v, — u) + e*"h'Mu) ﬁ a(u —vy) (3D
k=1 k=1

5. CONCLUSION

We have constructed an asymmetric face model corresponding to an
SU, (2) invanant spin chain. The asymmetry is generated due to the parame-
ters p and ¢. The intertwining relations are used to construct the Bethe
eigenstates. Our analysis may give some clue to the construction of general-
ized face models.
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